10 research outputs found

    Menke points on the real line and their connection to classical orthogonal polynomials

    Get PDF
    AbstractWe investigate the properties of extremal point systems on the real line consisting of two interlaced sets of points solving a modified minimum energy problem. We show that these extremal points for the intervals [−1,1], [0,∞) and (−∞,∞), which are analogues of Menke points for a closed curve, are related to the zeros and extrema of classical orthogonal polynomials. Use of external fields in the form of suitable weight functions instead of constraints motivates the study of “weighted Menke points” on [0,∞) and (−∞,∞). We also discuss the asymptotic behavior of the Lebesgue constant for the Menke points on [−1,1]

    Minimal Riesz energy on the sphere for axis-supported external fields

    Get PDF
    We investigate the minimal Riesz s-energy problem for positive measures on the d-dimensional unit sphere S^d in the presence of an external field induced by a point charge, and more generally by a line charge. The model interaction is that of Riesz potentials |x-y|^(-s) with d-2 <= s < d. For a given axis-supported external field, the support and the density of the corresponding extremal measure on S^d is determined. The special case s = d-2 yields interesting phenomena, which we investigate in detail. A weak* asymptotic analysis is provided as s goes to (d-2)^+.Comment: 42 pages, 2 figure

    Point sets on the sphere S2\mathbb{S}^2 with small spherical cap discrepancy

    Full text link
    In this paper we study the geometric discrepancy of explicit constructions of uniformly distributed points on the two-dimensional unit sphere. We show that the spherical cap discrepancy of random point sets, of spherical digital nets and of spherical Fibonacci lattices converges with order N1/2N^{-1/2}. Such point sets are therefore useful for numerical integration and other computational simulations. The proof uses an area-preserving Lambert map. A detailed analysis of the level curves and sets of the pre-images of spherical caps under this map is given

    Quasi-Monte Carlo rules for numerical integration over the unit sphere S2\mathbb{S}^2

    Full text link
    We study numerical integration on the unit sphere S2R3\mathbb{S}^2 \subset \mathbb{R}^3 using equal weight quadrature rules, where the weights are such that constant functions are integrated exactly. The quadrature points are constructed by lifting a (0,m,2)(0,m,2)-net given in the unit square [0,1]2[0,1]^2 to the sphere S2\mathbb{S}^2 by means of an area preserving map. A similar approach has previously been suggested by Cui and Freeden [SIAM J. Sci. Comput. 18 (1997), no. 2]. We prove three results. The first one is that the construction is (almost) optimal with respect to discrepancies based on spherical rectangles. Further we prove that the point set is asymptotically uniformly distributed on S2\mathbb{S}^2. And finally, we prove an upper bound on the spherical cap L2L_2-discrepancy of order N1/2(logN)1/2N^{-1/2} (\log N)^{1/2} (where NN denotes the number of points). This slightly improves upon the bound on the spherical cap L2L_2-discrepancy of the construction by Lubotzky, Phillips and Sarnak [Comm. Pure Appl. Math. 39 (1986), 149--186]. Numerical results suggest that the (0,m,2)(0,m,2)-nets lifted to the sphere S2\mathbb{S}^2 have spherical cap L2L_2-discrepancy converging with the optimal order of N3/4N^{-3/4}

    Analysis of framelet transforms on a simplex

    Full text link
    In this paper, we construct framelets associated with a sequence of quadrature rules on the simplex T2 in ℝ2. We give the framelet transforms- decomposition and reconstruction of the coefficients for framelets of a function on T2. We prove that the reconstruction is exact when the framelets are tight. We give an example of construction of framelets and show that the framelet transforms can be computed as fast as FFT

    Analysis of framelet transforms on a simplex

    Full text link
    In this paper, we construct framelets associated with a sequence of quadrature rules on the simplex T2 in ℝ2. We give the framelet transforms- decomposition and reconstruction of the coefficients for framelets of a function on T2. We prove that the reconstruction is exact when the framelets are tight. We give an example of construction of framelets and show that the framelet transforms can be computed as fast as FFT
    corecore